最后一遍-L15-3Sum


Given an array nums of n integers, are there elements a, b, c in nums such that a + b + c = 0? 
Find all unique triplets in the array which gives the sum of zero.

Note:
The solution set must not contain duplicate triplets.

Example:

Given array nums = [-1, 0, 1, 2, -1, -4],

A solution set is:
[
  [-1, 0, 1],
  [-1, -1, 2]
]

理解题意: 理解没有重复的triplet的意思 Array two index,

代码:

class Solution {
    // 主要的在于排序,关键的点,在于去重
    public static List<List<Integer>> threeSum(int[] nums) {
        List<List<Integer>> result= new ArrayList<List<Integer>>();
        // first sort
        Arrays.sort(nums);
        for(int i =0 ; i < nums.length-2; i++){
            for(int j = i+1,k=nums.length-1 ; k>j;){
                if(nums[i]+nums[j]+nums[k] == 0){
                    List<Integer> tmpresult = Arrays.asList(nums[i],nums[j],nums[k]);
                    result.add(tmpresult);
                    j++;
                    k--;
                }else if(nums[i]+nums[j]+nums[k]> 0){
                    k--;
                }else{
                    j++;
                }
            }
        }
        return result;
    }

    public List<List<Integer>> threeSum(int[] nums) {
        List<List<Integer>> result = new ArrayList<List<Integer>>();
        if(nums == null|| nums.length <3) return result;
        Arrays.sort(nums);

        //two point interation
        for (int i = 0; i < nums.length - 2; i++) {
            if(i > 0 && nums[i] == nums[i-1]) continue;
            int j=i+1,k=nums.length-1;
            
            while(j < k){
                if(j>i+1 && nums[j-1] == nums[j]){
                    j++;
                    continue;
                }
                int sum = nums[i]+nums[j]+nums[k];
                if(sum==0){
                    result.add(Arrays.asList(nums[i],nums[j],nums[k]));
                    j++;
                    k--;

                }else if(sum>0){
                    k--;
                }else{
                    j++;
                }
            }
        }
        return result;
    }
}

Powered by andiHappy and Theme by AndiHappy